
DESIGN OF A SIMULATION ENVIRONMENT
FOR LABORATORY MANAGEMENT BY ROBOT ORGANIZATIONS *

Bernard P. Zeigler, Franc;ois E. Cellier, Jerzy W. Rozenblit
Dept. of Electrical and Computer Engineering

University of Arizona, Tucson, AZ 85721

ABSTRACT
This paper describes the basic concepts needed for a simulation environment capable of

supporting the design of robot organizations for managing chemical, or similar, laboratories
on the planned U.S. Space Station. The environment should facilitate a thorough study
of the problems to be encountered in assigning the responsibility of managing a non-life-
critical, but mission valuable, process to an organized group of robots. In the first phase of
the work, we seek to employ the simulation environment to develop robot cognitive systems
and strategies for effective multi-robot management of chemical experiments. Later phases
will explore human-robot interaction and development of robot autonomy.

INTRODUCTION
This paper describes the design of a simulation environment capable of supporting the

study of robot organizations for managing chemical, or similar, laboratories aboard Space
Station. Laboratory management includes the servicing and calibration of equipment, the
set-up of experiments to external specifications, the monitoring and control of experiments
in progress, the measurement of results, and finally the recording and analyzing of data.
The environment should facilitate a thorough study of the problems to be encountered in
assigning the responsibility of managing a non-life-critical, but mission valuable, process
to an organized group of robots.

Our ultimate research goals are to employ the simulation environment to develop
robot cognitive systems and strategies for effective multi-robot management of laboratory
experiments. We seek an understanding of how to partition automation tasks between
hard and soft forms, i.e., between “intelligent” instruments and flexible robots. We shall
assess the nature of human supervision initially required, and seek to develop workable
man-robot co-operation protocols. Also, we seek to develop robot learning paradigms such
that the autonomy of a robotic organization increases with experience, and consequently,
the need for human supervision and intervention is diminished.

It is timely to begin exploration of advanced robot-controlled instrumentation. For ex-
ample, handling fluids in orbit will be essential to many of the experiments being planned
in manufacturing and biotechnology. However, the microgravity conditions of space neces-
sitate radically different approaches to fluid handling than common on earth. As experi-
ence in space accumulates, approaches and instrumentation will likely undergo continual
modification, enhancement, and replacement. Thus, robots for managing such equipment
must be sufficiently intelligent and flexible so that constantly changing environments can
be accommodated. Given its importance and novelty, we have chosen fluid handling in
microgravity as the focus for our laboratory environment.

Discrete event simulation and AI knowledge representation schemes form a power-
ful combination, called knowledge-based simulation, for studying intelligent systems in a
realistic manner 1,3,5,6,7,8). DEVS-Scheme [14,151 is a knowledge-based simulation envi-
ronment for mo d elling and design that facilitates construction of families of hierarchical
models in a form easily reusable by retrieval from a model base. The laboratory environ-
ment, implemented in DEVS-Scheme, is being constructed on the basis of object-oriented
and hierarchical models of laboratory components at multiple levels of abstraction.

* Supported by NASA-Ames Cooperative Agreement No. NCC 2-525, “A Simulation Environment
for Laboratory Management by Robot Organizations”

313

The robot cognition model is based on an “action-by-exception” principle control of
a knowledge base of Model-Plan Units (MPUs). Davis [2] described a similar knowledge
based simulation environment in which agents are governed by a script (plan of actions)
and a set of production rules for deciding when to proceed from one phase of the plan to
the next, which detailed actions to execute within a phase, and what to do if one plan has
to be replaced by another one. Holland’s [4] classifier (parallel production rule) system
provides concepts for sequencing robot actions.

In designing the robot models, we assume that necessary mobility, manipulative and
sensory capabilities exist so that we can focus on task-related cognitive requirements.
Such capacities, the focus of much current robot research, are treated at a high level of
abstraction obviating the need to solve current technological problems. Organizational
issues are introduced from the beginning since individual robot capabilities may be much
influenced by co-operative requirements.

A primary goal in the robot model design is to minimize the number of sensory inputs
that the system must attend to at any one time. Except at critical selection points,
attention is focused on only those aspects of the environment dictated by the currently
activated MPU. While an MPU behavior lies within its envelope, no other MPU can
supplant it, even if its initialization conditions better fit the current situation. One of the
primary goals of the project will be to judge whether these principles provide a workable
basis for intelligent robot design. For example, such robots may be so single-minded as to
be incapable of flexibly responding to an unknown or changing environment.

DEVS-Scheme Simulation Environment
DEVS-Scheme [14,151 is a knowledge-based simulation environment for modelling and

design that facilitates the construction of families of models in a form easily reusable by
retrieval from a model base. The environment supports the construction of hierarchical
discrete event models, and is written in the PC-Scheme language which runs on IBM
compatible microcomputers and on the Texas Instruments Explorer System.

System Entity Structure Knowledge Representation
Model specification and retrieval in the DEVS-Scheme simulation environment is medi-

ated by a knowledge representation component designed using the system entity structuring
concepts 16,191. The system entity structure incorporates decomposition, taxonomic, and
coupling I, nowledge concerning a domain of real systems [10,12]. A user prunes the entity
structure according to the objectives of the modelling study obtaining a reduced structure
that specifies a hierarchical discrete event model [ll]. Upon invoking the transform pro-
cedure, the system searches the model base for components specified in the pruned entity
structure, and synthesizes the desired model by coupling them together in a hierarchical
manner. The result is a simulation model expressed in DEVS-Scheme which is ready to
be executed to perform simulation studies.

Process Laboratory Model
The laboratory environment is being constructed on the basis of object-oriented and

hierarchical models of laboratory components within DEVS-Scheme. Laboratory configu-
rations will be determined by pruning the entity structure knowledge representation. The
laboratory model is being designed to be as generic as possible. However, as stated, the
focus will be upon fluid handling in microgravity which presents a variety of problems that
are unique to space.

314

Figure 1. System Entity Structure for Space Station Laboratory

Figure 1 illustrates the approach taken. The entity structure for SPACE STA-
TION LABORATORY decomposes this entity into MATERIALS, ACTION PLANS, a
WORKSPACE, INSTRUMENTS, and the ROBOT SYSTEM. Each of the latter entities
will have one or more classes of objects (models) expressed in DEVS-Scheme to realize
it. MATERIALS will be specialized by physical state into the classes GAS, LIQUID,
and SOLID, and will be further subclassified as needed. ACTION PLANS are composed
of UNIT OPERATIONS which decompose into four types: TRANSPORTATION (which
changes the physical co-ordinates of a material, e.g. pumping), TRANSFORMATION
(which transforms the state of a single material), COMBINATION (which produces a new
material from several input materials, e.g. chemical reactions), and SEPARATION (which
partitions a material into several components).

UNIT OPERATIONS are carried out with one or more INSTRUMENTS, which may
be TRANSPORTERS, TRANSFORMERS (e.g. centrifuges), COMBINERS (e.g. mix-
ers), or SEPARATORS. To illustrate the special nature of space, consider transporters.
Since air/liquid interfaces are not permitted under microgravity conditions, standard earth-
bound containers, such as beakers, cannot be used. A design of a space adapted “beaker”
would have an aluminium bottle containing an inflatable bag, which is the actual liquid
container; liquid is injected/extracted by means of syringes; air pressure between the out-
side of the bag and the inside of the bottle wall ensures that the bag remains “full” at all
times .

ACTION PLANS are sequences of UNIT OPERATIONS with associated MATERI-
ALS and INSTRUMENTS. For example, injecting several liquids into a bottle, placing the
bottle in a shaker, and then placing it in a heating spiral is a sequence related to experimen-
tation with chemical reactions. Action plans have associated models whose construction
will be discussed in the context of the robot Model-Plan Unit (MPU).

INSTRUMENTS have attributes which include operational conditions so that normal
and abnormal operating behavior can be studied.

To set up a particular laboratory environment, the LABORATORY entity structure is
pruned to create a pruned entity structure which will transform into a laboratory model.
Constraints on the possible configurations of components, especially those imposed by
micro ravity and space environments, are captured by appropriate synthesis and selection
rules $91.

315

ROBOT MODELS
Designing Model-Plan Units

The first stage in designing Model-Plan Units, involves modelling of continuous pro-
cesses by discrete event models [13]. We start with a particular real process, such as heating
liquid in a doubly-contained bottle. We identify regions of operation such as: “there is a
sufficient amount of liquid in the bottle”, “the liquid has reached the desired operational
temperature”, “the air pressure is too high”, “the bottle has exploded”. A continuous dy-
namical model is then developed for each region based on physic-chemical considerations.
Boundaries between regions are then identified, and a discrete event model is specified
whose internal events represent such transitions from one boundary to another. Schedul-
ing of such transitions is based on time-to-next-event values obtained from trajectories of
the dynamical model. For example, if the initial quantity of liquid and the rate at which it
heats up are known as well as the increase in air pressure with temperature, then the time
to reach the “air pressure too high” region can be pre-determined, and hence scheduled.

For each action on the real process, a normal state trajectory is identified in the
continuous model and projected into the space of sensor measurements. An envelope is
determined to enclose this projected state trajectory. This envelope specifies the variation
to be tolerated in sensor measurements while still accepting an observed trajectory as
normal. For computational feasibility, sensors with binary states (or a small set of discrete
states) will be preferred, circumstances permitting. For example for sterilizing a liquid,
that liquid should be heated up to at least 70 degrees centigrade, and should be kept at that
temperature for a prescribed period of time. For other reasons, it may not be advisable to
heat the liquid beyond 80 degrees centigrade. So, we may employ a sensor whose binary
output indicates the temperature lying within, or outside of, the range 70-80. In addition
to sensory boundaries, we employ timing information to determine normal operation. From
estimated uncertainties in the initial state and parameters, the continuous model yields
the window in which the time-to-next-event must lie for each state transition [18].

The plan of an MPU specifies a sequence of UNIT-OPERATIONS to be carried out
to bring the real process from an initial state to a desired state. For example, an MPU
for sterilizing water might specify filling a bottle with water, placing it in a heating spiral,
and removing it when the required temperature of 70 degrees centigrade has been reached.
Associated with each UNIT OPERATION is a set of sensors for detecting its initialization
and goal states together with the time window in which each transition time must lie. If,
for example, the time for the temperature sensor to change to its high state is not within
that allowed, the MPU is disabled; if the time is within bounds, the next action, removing
the bottle, is carried out.

Plan Abortion and Restart
Following disablement of an MPU, other MPUs may be activatable in the prevailing

state. MPUs may, for example, exist if the process state is still a normal one; as a
special case, the last activated MPU may be still have its initialization conditions satisfied.
Consider for example, a situation where the envelope timing bounds associated with the
action “heat water” were exceeded because the power to the heating spiral was turned
off. The Selector must prevent the aborted MPU from gaining activation and attempting
indefinitely to use an inoperative heater. This might be done with a recency, or frequency-
of-use component in the selector’s conflict resolution method.

Diagnostics are associated with MPU plan abortion. These diagnostics will attempt to
discover faults which can be corrected to return the state to one in which normal operation
can be resumed. Such diagnostics are guided by the sensor envelope and time window
violations which caused the MPU to abort. For example in the above situation, given that
the expected heating time was exceeded, a diagnostic may deduce that the heating spiral

316

is not producing heat, and that one cause might be that power to it is turned off. The
model underlying an MPU provides the basis for designing such diagnostic units.

Naturally, we expect that many unforeseen situations will emerge in simulation runs.
In such cases, the robot system will fail. Since the current state of the process, as viewed in
the last activated MPU and its sensor readings (or a record of the most recently activated
MPUs) is available, we will be in a position to analyze what went wrong. It is expected
that, in a real space laboratory, such events will also occur. Protocols will be investigated
to alert human supervisors to such events, and facilitate restoring robot system operation.

IMPLEMENTATION
A simplified entity structure for the implemented robot organization is shown in Figure

2. This structure is transformed into a hierarchical model containing “controlled-models”
at two levels. “Controlled-models” is a class in DEVS-Scheme which facilitates the con-
struction of models containing arbitrary numbers of components which communicate with
each other and with the outside world via a controller (171. Thus at the top level, the
ROBOT-SY STEM is a controlled-model containing a SPACE-MANAGER as controller,
and ROBOTS as components. Each ROBOT contains a motion, a sensory, and a cogni-
tion sub-system. The COGNITION-SYSTEM is itself a controlled model containing the
SELECTOR as controller, and MPUS as components.

(R-m)
I

e o b o t System Decomposition)

Figure 2. Entity structure for the Robot Organization

ROBOTS use their sensory subsystems to communicate with each other via the
SPACE-MANAGER. When a ROBOT changes its position, its motion sub-system sends
its new location to the SPACEMANAGER which keeps track of the ROBOTS positions.
When a ROBOT wishes to communicate with other ROBOTS, it sends its message to the
SPACE-MANAGER which relays the message only to those ROBOTS that are located
within the range of the sender. This range may vary depending on the channel on which
the message is sent. In this way, different transmission media and sensory modalities may
be modelled: light and vision, sound and hearing, pressure and touch, etc. Latency in
message transmission, implemented by a delay in the SPACE-MANAGER, may also de-
pend on the medium. Messages on certain channels, such as touch, are reflected back to
the SPACE-MANAGER by sensory-subsystems upon arrival to a sensory subsystem, as
well as being transmitted to the cognition system. Such echo messages are used by the
original sender to ascertain relationships to the receiving robot.

317

Since the SPACE-MANAGER has complete knowledge of locations, it can detect col-
lisions between ROBOTS. Space may be treated as a resource shared by its occupants
so that collisions represent attempts to occupy the same space twice at the same time.
The “management” of the resource is “dumb” if collisions are only detected. However, the
SPACE-MANAGER may be given additional intelligence to co-ordinate the ROBOTS, e.g.
to prevent collisions, thus modelling an artificial layer of supervision above the naturalistic
one.

Within each ROBOT’S cognition system, action-by-exception control ensures that an
MPU, once initiated, retains activation until its plan is successfully executed, or until a
significant discrepancy arises between the actual results of carrying out the plan and the
results expected by the model. The SELECTOR is essentially a bi-state device whose state
is determined by the MPU responses. In the closed state, it passes on the incoming sensory
inputs to the activated MPU. Upon completion of the activated plan or upon receiving
a discrepancy alert, it switches to the open state in which MPUs may vie for activation.
Incoming sensory input is broadcast to all MPUs. The first MPU to respond to the input
is established as the activated MPU. Once an MPU activation has occurred, the closed
state is resumed.

As stated, a primary goal in this design was to minimize the number of sensory inputs
that the system must attend to at any one time. This is achieved here by the fact that, in
the closed state, the SELECTOR acts like a closed wire which uncritically transmits all
inputs to the activated MPU. The latter only pays attention to those inputs which matter
to achieve its goals.

In the future, we intend to implement more general conflict resolution schemes to
determine which of the activatable MPUs will be granted permission to activate. MPUs
will be arranged in a generalization hierarchy, an inverted tree with relatively few highly
general MPUs at the lowest level. Such generalists cover most of the environment, but
with less than fully efficient capabilities. Successive levels contain specialist MPUs with
increasingly refined models and plans. Of those MPUs responding to an input in the open
state, the SELECTOR may choose the one with the highest specificity level. Such an
architecture supports learning of new MPUs in the manner described by Holland [4].

Robot
Motion Sensory
System (System

1‘
Cognition System

t

Assistance I I
I I Navigator I

Figure 3. Prototype Robot Configuration

318

The MPUs comprising the robot brain are of two kinds: those specialized for carrying
out specific laboratory tasks and those specialized for more general tasks involving com-
munication, motion, co-operation, etc. A prototype minimal configuration illustrated in
Figure 3 contains two robots each with the following MPUs:
Task Specialist MPU: specialized for executing a particular experiment related task, re-
quests help when needed in performing this task by relinquishing control to the Assistance-
Requestor.
Assistance-Requestor: MPU specialized for the task of requesting help from other
robots. When it is activated, it initiates a protocol which tries to make contact with
robots within its range and to engage one which can provide the needed assistance.
Assistance-Offerer: MPU specialized for the task of dealing with incoming requests for
help emitted from Assistance-Requestors of other robots. When activated, it decides if
help can be offered, and if so, engages in a dialogue with the Assistance-Requestor of the
help-seeking robot and sets up a rendezvous. It relinquishes control to the navigator to
bring the ROBOT to the requestor’s work site. The assistance offer is most easily activated
when the ROBOT is idle, and the SELECTOR is in its open state. To replace an already
activated MPU (in its closed state), the latter MPU must be able to accept incoming
requests for help and relinquish control.
Navigator: MPU specialized for directing the motion sub-system to bring the robot to a
given destination. It requests the current motion state from the motion component, and
sends it new parameters (direction, speed, and time-step) for travelling to the vicinity of
the destination. Once there, it directs the motion component in physically contacting the
object or robot at the destination. The touch channel is used for judging when contact
has been made.

Elementary scenarios in which the model has been tested are: a) one robot requests
assistance, one robot available to offer help; b) one Assistance-Requestor, two Assistance-
Offerers available; and c) two Assistance-Requestors, one Assistance-Offerer available. In
case b), the first offerer to respond engages with the requestor. The second one receives
no confirmation and returns to its previous state. In case c), the first requestor to engage
with the offerer is helped. The second one continues to send out assistance requests.

The MPUs are developed as objects in the class “forward-models” of DEVS-Scheme.
Models in this class are specified in a rule-based programming paradigm. As shown in
Figure 4, a rule, called an activity, is a structure which contains condition and action slots,
as usual, and in addition, slots for specifying outputs to be produced before and/or after
the action is performed. An action specifies a change in the state of the model. Rules for
specifing both internal and external transitions have the same format. Internal transition
rule conditions test the phase and state of the model. External transition rules include
tests of the input and elapsed time in their conditions.

(-)

Figure 4. Structure of an activity, i.e., a rule for prescribing MPU state transitions

As an example, an informal presentation of some of the rules for the Assistance-
Requestor is given below:

319

external activity :
R1. if phase is wait-for-info

and receive x on port motion-info

and hold-in phase active for 1 unit
then record value of x as current position

internal activities:
R2. if phase is active

and need help in executing task
then send out request for help

and passivate in wait-for-help

then send to port starting
R3. if phase is active

and hold-in phase working for 100 units
and send to port finished

R4. if phase is working
then passivate

Rule R1 is an external activity which activates th model when an external event
arrives on the port “motion-info” while the model is in the phase “wait-for-info”. Rules
R2, R3, and R4 are internal activities associated with rule R1. Rules R2 and R3 provide
alternative courses of action that follow once R1 has placed the model in the “active” phase.
R2 starts a sequence of activities dictating what to do if help is needed. R3 bypasses this
request for help, and immediately lets the model proceed to the “working” phase. R4
dictates what happens while the model, with or without help, has completed its “working”
phase (namely nothing, since the activity itself has not been modelled so far except for the
time it takes to execute it).

Rule R3 provides an example where both before- and after-outputs are specified. The
before-output is generated just before the action is evaluated while the after-output is
generated at the end of the interval specified by the hold-in primitive.

The inference engine underlying forward-models evaluates the rules in the order in
which they are added to the model. One advantage of employing rules is apparent in the
above example: rules, be they internal or external activities, that are closely associated can
be placed contiguously. This avoids breaking sequences of external and internal transitions
apart, and thus, aids model comprehension. A second benefit: since outputs may be
specified within the rules, the output specification is not separated from the transition
specification as necessitated otherwise.

CONCLUSIONS
As a theory of cognition, the above model has the following properties:
a) except at MPU selection points, attention is focused on only those aspects of the

environment dictated by the currently activated MPU. If a recording mechanism were
to be added which is sensitive only to the current activity, the system, for the most
part, would only be able to recall highly restricted portions of its sensory input history
(selective attention and recall).

b) while an MPU behavior lies within its envelope, no other MPU can supplant it, even
if its initialization conditions better fit the current situation (cognitive hysteresis).

One of the primary goals of the project will be to judge whether these principles provide
a workable basis for intelligent robot design. For example, such robots may be so single-
minded as to be incapable of flexibly responding to an unknown or changing environment.

320

Likewise, handling of interruptions, such as requests for help (see below), must be encoded
in each MPU since the selector does not inspect inputs in the closed state.

REFERENCES
[l] Bobrow, D.G. (1985). Qualitatiue Reasoning About Physical System, MIT Press, Cambridge, MA.
(21 Davis, P.K. (1986). “Applying Artificial Intelligence Techniques to Strategic-Level Gaming and

Simulation”, In: Modelling and Sirnulation Methodology in the Artificial Intelligence Em, M.S. Elzas, T.I.
&en, B.P. Zeigler (Eds.). North Holland, Amsterdam.

[3] Hardt, S.H. (1988). “Aspects of Qualitative Reasoning and Simulation for Knowledge Intensive
Problem Solving”, In: Modelling and Simulation Methodology: Knowledge System P a d g m , M.S. Elzas,
T.I. &en, B.P. Zeigler (Eds.). North Holland, Amsterdam.

(41 Holland, J.H. (1986). “Escaping Brittleness: The Possibilities of General-Purpose Learning Algo-
rithms Applied to Parallel Rule-Based Systems”, In: Machine Learning: An Artificial Intelligence A p
prcuch, Vol. 11, R.S. Michalski, J.G. Carbonell, and T.M. Mitchel (Eds.), Morgan-Kaufmann Pub.
Co., Los Altos, CA.

[5] Klahr, P. (1986). “Expressibility in ROSS, an Object-Oriented Simulation System”, In: Artificial
Intelligence in Simulation, G.C. Vansteenkiste, E . J.H. Kerckhoffs, B.P. Zeigler (Eds.), SCS Publications,
San Diego, CA.

[6] Rajogopalan, R. (1986). “The Role of Qualitative Reasoning in Simulation”, In: ArtifiialIntelligence in
Simulation, G.C. Vansteenkiste, E.J.H. Kerckhoffs, B.P. Zeigler (Eds.), SCS Publications, San Diego,
CA.

[7] Reddy, Y.V., M.S. Fox, and N. Husain (1985). “Automating the Analysis of Simulations in KBS”,
Proc. SCS Multi-Conference, San Diego, CA.

[8] Reddy, Y.V., M.S. Fox, N. Husain, and M. McRoberts (1986). “The Knowledge-Based Simulation
System”, IEEE Software, March, pp 26-37.

191 Rozenblit, J.W. and Y.M. Huang (1987). “Constraint-Driven Generation of Model Structures”, Proc.
Winter Simulation Conf., Atlanta, GA.

[lo] Rozenblit, J.W., S. Sevinc and B.P. Zeigler (1986). “Knowledge-Based Design of LANs Using System
Entity Structure Concepts”, Proc. Winter Simulation Conf., Washington, D.C.

[ll] Rozenblit, J.W. and B.P. Zeigler (1988). “Design and Modelling Concepts”, In: Encyclopedia of
Robotics, R. Dorf, S. Nef (Eds.), J. Wiley & Sons, New York.

112) Sevinc, S. and B.P. Zeigler (1987). Entity Structure Based Design Methodology: A LAN Protocol
Example, Tech. Rep. AIS-4, CERL Lab., Dept. of ECE, Univ. of Arizona, Tucson, AZ 85721.

[13] Zeigler, B.P. (1984). Multifacetted Modelling wad Discrete Event Simulation, Academic Press, London.
[14] Zeigler, B.P. (1986). DEVS-Scheme: A LispBased Environment for Hierarchical, Modular Discrete

Event Models, Tech. Rep. AIS-2, CERL Lab., Dept. of ECE, Univ. of Arizona, Tucson, AZ 85721.
[15] Zeigler, B.P. (1987). “Hierarchical, Modular Discrete Event Modelling in an Object Oriented Envi-

ronment”, Simukrtion J., November.
[16] Zeigler, B.P. (1987). “Knowledge Representation from Newton to Minsky and Beyond”, Applied

Artifiial Intelligence, 1, January, pp 87-107.
[17] Zeigler, B.P. (1988). “Implementation of Methodology Based Tools in the DEVS-Scheme Environ-

ment”, In: Modelling and Simulation Methodology: Knowledge System Pamdipm, M.S. Elzas, T.I. Oren,
B.P. Zeigler (Eds.), North-Holland, Amsterdamm.

[18] Zeigler, B.P. (in press). “The DEVS Formalism: Event-Based Control for Intelligent Systems”, to
appear in special issue of Proceedings of IEEE.

I191 Zeigler, B.P. and G. Zhang (1987). “Formalization of the System Entity Structure Knowledge R e p
resentation Scheme: Proofs of Correctness of Transformations”, In: AI, Simulation, and Modelling, L.
Widman, D. Reidel (Eds.), (in preparation).

321

